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AIIIIrad-The development of shear bands in a plate subject to pure bending is analyzed numerically. For a
plate with an initial periodic imperfection. the course of shear band development is determined for three
material models; an elastic-plastic solid with a rather sharp vertex on its yield surface. an elastic-plastic
solid with a more blunt vertex on its yield surface and a nonlinear elastic solid. The uniaxial stress-strain
behavior of these material models is taken to be identical. In each case. the initial imperfection leads to the
development of surface undulations on both the compressive and tensile sides of the plate and, sub­
sequently. shear bands initiate at points of strain concentration induced by these surface undulations. The
course of shear band development is found to depend on the constitutive law employed to characterize the
material behavior. For the elastic-plastic solid with the sharper vertex, the ellect of additional longer
waveleaath imperfections is considered. These additional long wavelength imperfections enhance the
process of shear band development by focussing the deformation into one or a few shear bands. In pure
bending, the shear bands must propagate into the plate against an adverse deformation gradient so that the
peak straining within the bands always occurs at the free surface and the shear bands end inside the plate.

1. INTRODUCTION
Localization of plastic flow in narrow shear bands is frequently observed in ductile metals
subject to tensile or compressive loading. The inception of localization has been analyzed for
several material models, based on a theoretical framework due to Hadamard [I], Thomas{2] and
Hill[3]. Such analyses consider a homogeneously deformed solid and determine the state at
which bifurcation into a localized shear band is first possible. This bifurcation coincides with
the loss of ellipticity of the governing incremental equations, Hill [3], Rice[4].

The growth of a shear band can be analyzed by a straightforward analysis[4] in cases where
the stress state outside the band is homogeneous and the band is assumed to have constant
width. However, in a solid subject to a non-uniform state of deformation the determination of
shear band growth requires a much more elaborate analysis. The first loss of ellipticity at a
point of the material and the corresponding directions of characteristics can be determined
readily; but the growth of the localized shear deformations and the extent to which shear bands
extend into neighboring elliptic regions of the material is a more complex question.

Some progress has been made by Tvergaard et at. [5] for the plane strain tensile test, in
which diffuse necking occurs first and subsequently shear bands develop in the non-uniformly
strained neck region. In [5] it was found that the locations of shear bands were very sensitive to
the form of small initial surface imperfections. Also, the intensity of the localized shearing
varied considerably along the bands, which often ended inside the material. The emergence of
shear bands from a slight material imperfection inside an otherwise homogeneous body has
been studied recently by Abeyaratne and Triantafyllidis{6]. Somewhat related to these results
are the bands found by Knowles and Sternberg [7] and Abeyaratne [8] in the vicinity of the tip
of a crack in anti-plane shear.

The present paper considers shear band development in a plate subject to pure bending.
Interest in this problem stems from various metal forming processes involving bending of sheet
metal, where bending beyond a certain minimum radius of curvature relative to the plate
thickness can lead to shear fracture at the surface. The possibility of bifurcation away from the
cylindrically symmetric fundamental state of pure bending has been studied by
Triantafyllidis [9] for an incompressible nonlinear elastic solid. The critical bifurcation mode is

tPresent address: Department of Aerospace Engineering, University of Michigan. Ann Arbor. MI 48109, U.S.A.
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a surface wave mode, which occurs first in the compressive region, with the shortest possible
wavelength being critical. Subsequently, if the fundamental unbifurcated state is thought to be
continued beyond the first critical bifurcation point, ellipticity of the governing equations is lost
at the surfaces. The directions of the characteristics in these hyperbolic surface regions are
shown in [9]. However, as soon as the first bifurcation point is reached, the surface waves will
start to grow, with very little additional overall straining being required to meet the condition
for shear band inception in small material regions at the wave bottoms, Hutchinson and
Tvergaard[10].

The particular material model to be used in the present investigation is the J2 corner theory
developed by Christoffersen and Hutchinson[ll], which was also used in studies of the plane
strain tensile test[5] and surface instabilities{l0]. In the total loading regime, for nearly
proportional loading, the instantaneous moduli are chosen as those of a nonlinear elastic solid (a
large strain generalization of J2 deformation theory). In the transition regime, for larger
deviations from proportional loading, the moduli are taken to stiffen smoothly until they
coincide with those of a linear elastic solid for stress increments directed along or within the
yield surface comer. For comparison purposes some results employing the nonlinear elastic
constitutive law are also included.

Bifurcation results based on the nonlinear elastic material model, as in [9], also hold for J2

corner theory as long as deviations from proportional loading remain inside the total loading
regime. For the bent plate this requirement is not satisfied since strong deviations from
proportional loading occur in the prebifurcation state. However, near the surface regions that
are most highly stressed and thus most important for bifurcation proportional loading does take
place. In addition to this limitation on the validity of the nonlinear elastic bifurcation predic­
tions, the subsequent growth of shear bands is quite sensitive to details of the vertex
description, Hutchinson and Tvergaard [12]. In the limiting case of a classical elastic-plastic
solid with a smooth yield surface, satisfying normality, there is strong resistance to shear band
localization[13].

2. PROBLEM FORMULATION
We consider a plate, as depicted in Fig. l(a), of length 2Lo and thickness ho+2.1110 in the

initial unstressed state, where ho is the average thickness and 2Aho is an initial thickness
inhomogeneity. The plate is subjected to pure bending by rotating its ends through an angle 29
relative to each other. Plane strain conditions are assumed to prevail throughout the defor­
mation history.

A Lagrangian formulation of the field equations, see, e.g. [14, 15], is adopted which has been
used extensively in previous finite element analyses[l6-18, 10,5,6]. The initial unstressed
configuration is taken as reference and a material point is identified by its Cartesian coordinates
Xi in the reference state. The reference state metric tensor is denoted by gij, with determinant g,
while in the current configuration the metric tensor is Gij and the determinant is G. The
Lagrangian strain tensor is given by

..... = !(G.. - g..) = !(u.. +u· +uk·u.. .)
'/11 2 '1 /1 2 '.1 I,' "~,I

(l)t

l" L,
x

2Lo ·1

hO+2A~ \ _

(0) ( b)

Fig. I. (a) The undeformed configuration of a plate. (b) The bent configuration assumed by a perfect plate.

tLatin indices range from 1to 3. while Greek indices, which will be employed subsequently, range from I to 2.
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where Uk are the displacement components on the reference base vectors and ( ).1 denotes
covariant differentiation in the reference coordinate system.

Equilibrium is expressed by the principle of virtual work which, under plane strain
conditions, is given by

(2)

Here, A and s denote, respectively, the cross-sectional area and perimeter of the body in the
reference configuration, Tall are the contravariant components of the Kirchoff stress tensor on
the embedded deformed coordinates and ra are the components of the nominal traction vector
on the reference base vectors.

The contravariant components Tall of the Kirchhoff stress tensor are related to the
corresponding components of the Cauchy stress tensor (Tall by

(3)

and the nominal traction components on a curve with normal "II in the reference configuration
are given by

(4)

An identity related to the principle of virtual work (2), which will prove useful in the
subsequent analysis, is

(5)

where Tall and Ua are the equilibrium stress and displacement fields at a given stage of the
deformation history and u: is any conveniently chosen compatible displacement field.

Consideration is restricted to deformations symmetrical about the center line of the plate,
x' =0 in Fig. 1(a), so that only one-half of the plate needs to be considered in the numerical
solution. The symmetry conditions are expressed by

UI = 0, T 2 = 0 at x· = o.

The top and bottom surfaces of the plate are required to remain traction free so that

T I = T2 = 0 at x2 = -l1ho
T 1=T2 =0 at x2 =ho+l1ho.

The initial thickness inhomogeneity, I1ho, is specified by

[
- m 1TX' - m 1TX']I1ho= ho ~I COST+~2cosT

(6)

(7)

(8)

where ~I and ~2 are imperfection amplitudes and m. and m2 are the corresponding wave
numbers.

The edge of the plate x I =La is rotated through an angle 8 relative to the center line x I =0
whlle remaining shear free. Taking the point about which the line Xl =Lorotates to be x2 =ho12,
the current Cartesian coordinates, Xl and f2, of points on this line are related by

SAS 11:2. C

-I Lo
x - = tan 8.
-2 1 ..x --no

2

(9)
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Rewriting (9) in terms of the displacement components u" gives the boundary conditions on the
edge of the plate as

(10)

We have chosen to express the first of eqns (10) in terms of the cotangent function, rather than
in terms of the tangent function in order to avoid numerical difficulties at 6 = 1T/2. Initially, at
8 = 0 numerical difficulties are avoided by using the first of eqns (10) multiplied by tan 6.

In interpreting some of the numerical solutions, advantage will be taken of the fact that the
boundary conditions imposed here on the edges :x I = 0 and :x I = Lo are also the appropriate
symmetry conditions for a segment of a plate of initial length 2kLo (k = 1,2,3 ...). The ends of
the plate are rotated through an angle 2k8 relative to each other, while requiring the defor­
mations to be periodic in the xl-direction with period 24 Within each segment, (i - 1)1.0 ~ xI ~

(i + l)Lo, i = - (k - I) to (k -I), the deformations are presumed symmetric about the midpoint
Xl = iLo.

3. CONSTITUTIVE RELATIONS

The constitutive relation employed here is the 12 corner theory of Christoffersen and
Hutchinson [I I]. This theory was introduced in order to develop an analytically tractable
phenomonological theory of plasticity which would incorporate certain features exhibited by
physical theories of plasticity. Quite generally, in physical models of polycrsytalline aggregates,
based on single crystal slip, the discreteness of slip systems in each grain leads to the prediction
of a yield surface vertex at the current loading point, when the yield surface is defined for small
offset plastic strains [19]. Calculations carried out for specific polycrystalline models do exhibit
yield surface vertices [20, 21], although experimental evidence for the formation of such
vertices is ambiguous and confticting[22].

The significance of vertex formation for bifurcation related phenomena in the plastic range
has been long appreciated in the context of plastic buckling applications [23, 24]. Recently, tbe
destabilizing effect of a vertex in tensile bifurcations has been investigated in a variety of
problems by employing some finite strain generalization of the h deformation theory of
plasticity. When the bifurcation state involves a proportional or nearly proportional loading
history, deformation theory is an acceptable plasticity theory for analyzing the onset of
bifurcation. However, even in these problems deformation theory is not an acceptable plasticity
theory for addressing questions concerning post-bifurcation behavior and imperfection sen­
sitivity, since strongly nonproportional loading almost always occurs in the post-bifurcation
regime. In the particular problem considered here, deformation theory is not even an ap­
propriate plasticity theory for investigating the onset of bifurcation due to the fact that strong
deviations from proportional loading take place well before the onset of bifurcation.

In h corner theory the instantaneous moduli for nearly proportional loading are chosen to
be the moduli of 12 deformation theory and for increasing deviation from proportional loading
the moduli stiffen monotonically until they coincide with the linear elastic moduli for stress
rates directed along or within the corner of the yield surface. With M?~ denoting the
deformation theory compliances and Mijld denoting the linear elastic compliances, the plastic
compliances of deformation theory are C;jld = M?~ - Mi~ so that

(II)

Here, ill! is the plastic part of the strain rate, ~ are the Jaumann rates of the contravariant
Kirchhoff stress components and by rate is meant differentiation with respect to some
monotonically increasing parameter which characterizes the deformation history.

The yield surface in the neighborhood of the current loading point is taken to be a cone in
stress deviator space with the cone axis in the direction

(12)
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An angular measure 6t of the stress rate direction relative to the cone axis is defined by
v v v

cos 6 = CljtJA iiSkJ(C",npqS""'s"rIl2.

The stress rate potential at the vertex is given by

(13)

(14)

The transition function f(6) is unity throughout the totailoading range, which is specified by
O:s 8 :s 80 and is identically zero for 8e < 8 :s 1T, where 8e denotes the angle of the yield surface
cone. In the transition regime, 80:S 8:s 8e, /(8) decreases monotonically and smoothly from
unity to zero in a manner that ensures convexity of the incremental relation. The transition
function employed here is the same as that employed in [5, 10] and is specified by

where

and

1
f(6) = g(4))[1 +12(4))]

6(4)) = 4> + arctan [1(4))], 1(4)) =dg/d4>
2g(4) )

(15)

(16)

(17)

with 6n = 6e - 1T/2. Of the transition functions considered in [11], this transition function was
found to most closely duplicate the moduli found in [20] using a self-consistent model of a
polycrsytalline aggregate. From the potential function (14) the strain rate is found to be

(18)

Inverting (18) gives the moduli R jjkJ(6) relating the Jaumann rate of Kirchhoff stress and the
strain rate so that

(19)

In 12 corner theory the total loading moduli are taken to be those of some finite strain
version of small strain 12 deformation theory. As in [5], we employ the incremental moduli of a
nonlinear elastic solid to give the 12 corner theory total loading moduli. The principal axes
techniques of Hill[25-27] are used to determine the components of the tensor of moduli R on
the Eulerian principal axes, giving

R - 2G r~ ~ II, ~ ~ 3 EslE, - 1 SUSll] f . - . k - 1
jjll - , UjlUjl +-1_ 2 UjjUkl - -2 1_ 2 2 or I - }, -

Vs EIE v_, u.
" 3

(20)

where l)jj is the Kronecker delta, Ej are the logarithms of the principal stretches and u/ =

tThe vertex angle 8 which will only appear in this Section is in no way related to the angle 8. through which the plate is
bent. The notation for vertex parameters employed here conforms with the notation in [II).
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3/2SIjSfjo Sfj being the Kirchhoff stress deviator on the principal axes. Furthermore, E. is the
slope of the uniaxial Kirchhoff stress-logarithmic strain curve, E, is the ratio of stress to strain
on this uniaxial stress strain curve and the parameters v, and G, are defined by

v. =1/2+ E,/E(v-l/2), G, =EJ2(1 + v.) (21)

with E being Young's modulus and v Poisson's ratio. With q = I, (20) and (21) give the tensor
of instantaneous moduli for the hypoelastic solid of Storen and Rice [28]. •

In addition to characterizing the response of the J2 corner theory solid in the total loading
regime, the nonlinear elastic solid having the incremental moduli (20) will be considered in its
own right in some of the numerical results to be presented subsequently. The incremental
relation (20) can be integrated to give the total Kirchhoff stress-logarithmic strain relation as

(22)

and a strain energy function 4> = 4>(EJ, E2, E3) can be constructed for which Ti = a4>/aEi. As is
more traditional in nonlinear elasticity theory, this strain energy function can also be expressed
in terms of the strain invariants [6,29].

The uniaxial Kirchhoff stress-logarithmic strain curve is represented by a piecewise power
hardening law of the form

T= EE

T/ay= (E/Ey)N

T <ay
(23)

where a y is the initial yield (Kirchhoff) stress, Ey = a,lE, and N is the strain hardening
exponent.

For h corner theory a more convenient measure of the yield surface angle than Be is the
angle J3e given by

Q ay
tan ~e = - (2 2)172at - ay

The angular measures Be and J3e are related by

(24)

(25)

and q is defined in (20). Here, the sharpness of the cone angle is limited by employing (24) to
give J3e for n/2 S J3e S (J3e)max and taking f3c =(J3c)max otherwise.

The components of the moduli R on the embedded deformed coordinates can be computed
from the components on the principal axes by making use of standard kinematic relations.
However, the Lagrangian formulation employed in the numerical calculations makes use of the
relation between the convected rate of the contravariant components of Kirchhoff stress +"'/3
and the Lagrangian strain rate T,-y8 given in the form

(26)

The moduli L are obtained from the moduli R appearing in (19) by employing the relation

(27)

4. BEHAVIOR OF A PERFECT PLATE IN PURE BENDING
We consider the behavior of a perfect (alto == 0) incompressible plate subject to pure bending

as imposed by the boundary conditions (6), (7) and (10). The slight degree of compressibility
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included in the formulation on which the finite element results are based has little effect on the
overall behavior.

One possible equilibrium configuration for the incompressible perfect plate is a portion of a
cylinder as illustrated in Fig. l(b). The principal stretches of a material point at a distance r
from the current center of curvature of the plate are given by

(28)

Here, K is the curvature of the currently unstretched fiber and the subscripts 1 and 2 denote
principal values associated with the tangential and radial (through-the-thickness) directions,
respectively. The current coordinate r of a material point is given in terms of the Cartesian
coordinate x2 in the reference configuration and the radius of the outer fiber under com­
pression, re, via the incompressibility condition

(29)

The angle 8 through which the plate has been bent is given in terms of the curvature K, the
initial thickness, ho, and the initial length, Lo, by

8 = (Kho)(Lolho). (30)

The deformations in this prebifurcation state, given by (28) and (29), are independent of the
coordinate x I and are parameterized by the nondimensional curvature Kho. Here, Kho will be
chosen as the monotonically increasing parameter characterizing the deformation history. For a
plate of initial length 2Lo, the angle 8 can be calculated from (30). When 8 = 'IT, Le. when
Kilo ='lTho/lo, the plate has been bent into a circular cylinder.

The complete solution for the deformation state, which involves solving for re as a function
of the curvature Kho, requires specification of the constitutive law, since the condition that the
principal stress in the radial direction, 0'2, vanishes at the outer fibers is used to determine re•

For a nonlinear elastic material the general solution for the stress state has been obtained by
Rivlin[30] and is explicitly given for the nonlinear elastic constitutive law (22), with piecewize
power law hardening (23), by Triantafyllidis [9]. Integrating the analytical expression for the
principal stress in the tangential direction, O'lt given in [9] through the plate thickness gives the
moment per unit width in the x3-direction, M, Le.

f.
'r

M = O'\rdr
'c

(31)

where re is the radius of the outer fiber under compression and r, is the radius of the outer fiber
under tension as shown in Fig. l(b). Figure 2 depicts the moment, M, as a function of the
curvature, Kho, for N = 0.1 and O'ylE = 0.002. The moment reaches a maximum at Kho= 0.48.

Also shown in Fig. 2 is the moment curvature relation for an elastic-plastic solid with

05

~__-x-_ ELASTIC-PLASTIC

--- NONLINEAR
ELASTIC

~ 0.3

b
i 02

0.1 x MAXIMUM MOMENT

°0L--,0,'-2-0,,-'.4---'0'--6---,.0J....a-,'-1.0-,,-'1.-2----­

Kho

Fig. 2. The moment. M, vs curvature, "ho. relations for incompressible perfect elastic-plastic and nonlinear
elastic plates with N =0.1 and CT,/E =0.002.
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N = 0.1 and O',IE = 0.002. For an incompressible elastic-plastic solid the moment curvature
relation depends on the uniaxial stress-strain curve, but not on the vertex characteristics, since
at each material point the stress state is one of plane strain tension or compression with a
superposed hydrostatic stress. In particular, the moment curvature relation shown in Fig. 2 for
the elastic-plastic solid holds for the classical smooth yield surface plasticity theory with
isotropic hardening as well as for the J2 corner theory solid. The elastic-plastic results were
obtained by a linear incremental method, with an iterative scheme being employed within each
increment to ensure that 0'2(rc ) = 0 as well as 0'2(r,) = o.

Although the stress state at each material point is one of plane strain tension or com­
pression, strongly nonproportionalloading does occur. Initially, the unstretched fiber is at the
center of the plate. As the curvature increases, the unstretched fiber moves toward the
compressive side of the plate, as indicated schematically in Fig. l(b), which leads to unloading
occurring as the unstretched fiber propagates into material that has previously yielded. The
solutions for the stress and deformation states for the elastic-plastic and nonlinear elastic solids
coincide prior to the onset of unloading which occurs at Kho= 0.083 for 0';E=0.002[9]. Even
though unloading initiates quite early in the deformation history the moment vs curvature
curves in Fig. 2 are indistinguishable to about Kho= OJ. Thereafter, the stiffening effect of
unloading manifests itself and, for the elastic-plastic solid, a maximum moment is not reached
until Kho= 0.93. This maximum moment is 4.5% higher than the maximum moment attained by
the nonlinear elastic solid.

As illustrated in Fig. 3, the strain histories at the most highly strained material points differ
for the nonlinear elastic solid and the elastic-plastic solid. Plotted in this figure are the principal
logarithmic strains in the tangential direction, EI = In At. at the outer most fibers, r = rc and
r = '" as a function of curvature Kho. At the outermost compressive fiber, , = 'c, EI is negative,
while at the outermost tensile fiber, , = r" EI is positive. For the nonlinear elastic solid,
E\(rc ) = - EI(r,)[9]. For the elastic-plastic solid the magnitude of the strain is greater at the
outermost compressive fiber than at the outermost tensile fiber.

Bifurcations from this state of pure bending, for the case of nonlinear elastic material
behavior, have been considered by Triantafyllidis[9]. The bifurcation mode encountered at the
lowest critical curvature corresponds to a short wavelength surface mode along the compressed
(r =rc) surface of the plate. At a somewhat higher curvature, a short wavelength surface mode
along the stretched surfaces (r = r,) of the plate becomes available. For a power hardening
nonlinear elastic solid, the critical condition for the onset of a surface instability is [10]

(33)

With N = 0.1, surface modes become available at Ej = - 0.202 (compression) and at EI = 0.252
(tension), corresponding to critical curvatures, Kho, of 0041 and 0.53, respectively. The critical
curvature for the compressive surface waves occur prior to the maximum moment while that for
tensile surface waves occurs after the maximum moment has been achieved.

-NONLINEAR ELASTIC

/NONLINEAR ELASTIC

-ELASTIC-PLASTIC

~ELASTIC-PLASTIC

0.6

02

0.4

-0.2 ----------- ----- COMPRESSIVE SURFACE INSTABILITY

E-H BOUNDARY
-0.4

-0.6

Fig. 3. The principal logarithmic strain in the tangential direction at the outermost fibers. Elo as a function
of curvature, Kilo. for incompressible perfect elastic-plastic and nonlinear elastic plates with N = 0.1 and

(I,IE =0.002.
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At somewhat greater strains the outermost fibers are deformed to the point at which the
incremental equilibrium equations admit real characteristics, that is, locally these equations
become hyperbolic rather than elliptic. In the pure bending problem elliptic and hyperbolic
regimes can coexist in different parts of the plate since the stress state is a function of position
through the thickness [9). Also, as exhibited in [9) the characteristics are curved. For the
nonlinear elastic solid considered here, with power law hardening, the strain at the elliptic­
hyperbolic interface is given by[12)

(34)

where q is defined in (20). With N = 0.1, (34) gives E1 = ± 0.322. As seen in Fig. 3, this strain is
attained in the outermost fibers when /Clio = 0.69. Note that for the nonlinear elastic solid,
ellipticity is lost at both the compressive and tensile surfaces at this critical curvature.

Since unloading occurs in the pure bending solution, Triantafyllidis bifurcation results [9) are
not directly applicable for the 12 comer theory solid. Nevertheless, it appears reasonable to
presume that the critical condition for surfact modes as well as for loss of ellipticity is a local
one, to be satisfied at the surfaces , ='c and , =',. For the 12 comer theory solid with a
IlOnvanishing total loading regime (80 ) 0), the critical strains for surface waves and shear bands
are also given by (33) and (34). Even though the plane strain pure bending solution given by the
classical smooth yield surface elastic-plastic solid with isotropic hardening coincides with that
for the 12 comer theory solid, the critical strains corresponding to surface waves and loss of
ellipticity for the smooth yield surface case are much in excess of those given by (33) and (34)
since these modes involve a change in loading path from the state of plane strain tension or
compression.

As can be seen in Fig. 3, the curvatures at which the surface wave bifurcations and loss of
ellipticity occur differ from the corresponding curvatures for the nonlinear elastic solid. The
critical strain for surface waves in compression is reached at /Clio =0.39 and in tension at
/Clio = 0.54. These critical curvatures differ only slightly from the corresponding critical cur­
vatures for the nonlinear elastic solid. However, loss of ellipticity in the pure bending state at
the compressive surface occurs at a smaller curvature, /Clio = 0.60, for the elastic-plastic solid
than for the nonlinear elastic solid. The loss of eUipticity in the pure bending state at the tensile
surface is delayed somewhat, to /Clio = 0.72. For the 12 comer theory solid the compressive and
tensile surface wave bifurcations and the loss of ellipticity at the compressive and tensile
outermost fibers aU occur prior to the attainment of the maximum moment.

5. NUMERICAL METHOD AND RESULTS
Let the values of displacements. strains, stresses and tractions corresponding to a known

approximate equilibrium state be given. The governing equations for prescribed increments of
traction or displacement are obtained by expanding the principle of virtual work (2) about this
state, which gives to lowest order,

where the moduli L a/J.,a are those appearing in (26) and ( . ) denotes increments of field
quantities.

A similar expansion of the displacement constraint along Xl = Lo given in (10) yields

l'

- Ii' cot 8 +li2 = -~+ [U 1cot 8 - U2 _X 2+! 110].Mn 8 2
(36)

The incremental principle of virtual work (35) serves as the basis for implementing the
numerical procedures. The finite element methods used in this study are those employed by
Tvergaard, Needleman and Lo[5) suitably modified to accommodate the boundary constraint
(36).

For a flow theory of plasticity such as 12 comer theory, the equilibrium solution is path
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dependent and a linear incremental procedure is used for this material model. At each stage of
the computation the correction terms, the bracketed terms on the right hand sides of (35) and
(36), are included to prevent drifting of the solution away from the true equilibrium path. For
the path independent nonlinear elastic solid (35) is solved iteratively by the Newton-Raphson
method to compute the equilibrium state exactly, within the limits of the chosen discretization.
As will be shown subsequently, for a nonlinear elastic solid, the angle 8 is not monotonically
increasing along the equilibrium path. The mixed finite element-Rayleigh-Ritz method,
Tvergaard[l7], is employed, as in [5], to overcome numerical difficulties associated with this
phenomenon.

Identical finite element discretizations are used for both material models. The grids consist
of quadrilaterals made up of four constant strain triangular subelements which are formed by
the two diagonals of the quadrilateral. For each quadrilateral static condensation is employed to
eliminate the nodal degrees of freedom associated with the central node.

The grid was designed utilizing the prebifurcation solution given in {9]. A variable mesh
spacing in the x2-direction was chosen so that for a perfect incompressible nonlinear elastic
plate a uniform element thickness would result at the critical curvature for shear bands.
Furthermore, the length of the elements in the x'-direction was adjusted to ensure, at
bifurcation into the shear band mode, orientation of the diagonals of the top and bottom rows
of elements along the most favorable angle for shear bands. Although, as noted in Section 4, the
critical curvature for shear bands for the elastic-plastic plate differs from that for a nonlinear
elastic plate, we employed the same mesh in the elastic-plastic calculations as in the nonlinear
elastic calculations. In any case, due to the presence of the initial thickness imperfection (8), the
conditions on mesh spacing and orientation at the onset of shear band development discussed
above are only met approximately for an imperfect plate. Typical undeformed meshes are
shown in Figs. 10 and 12.

In all the calculations reported on here, the uniaxial stress-strain behavior of the material is
characterized by a yield strain, uy/E, of 0.002, a Poisson's ratio, P, of 0.3 and a strain hardening
exponent, N, of 0.1 and 32 elements are employed through the plate thickness.

We first consider a plate with a periodic imperfection in the xl-direction, and focus attention
on the growth of one half-wavelength. The half-wavelength to thickness ratio is 0.301 and the
initial imperfection is specified by setting mI= I, {I =6 X 10-4and {2 ii! 0 in (8).

Figure 4 displays the computed moment vs \:urvature curves for three material models; the
nonlinear elastic solid, a 12 corner theory solid with a limiting cone angle, (/3c)max, of l35° and a
12 corner theory solid with a more blunt limiting cone angle of 1150

• The angle limiting the total
loading range, 60, is taken as 80 = 6c/2 - 11"/4 with 6c given by (25). The vertex characterization with
(/3c)max = 135° was also employed in [5], while Hutchinson and Tvergaard [12] compared the course
of shear band development in homogeneous plane strain tension for the two vertex charac­
terizations employed here.

Plotted in Fig. 4 is the moment, M, calculated from (5) with a suitable choice of u* and
normalized by uyh0

2
, against the curvature parameter Kho. For an imperfect plate Kho is defined

in terms of the angle 8 by (30). The curvature at which the maximum moment, Mmaxo is attained
depends somewhat on the vertex description, with Mmax occurring at Kho= 0.77 for the vertex
with (l3c)max =1150 and at Kho=0.72 for the vertex with (l3c)max = 1350

• In each case the
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Fig. 4. The moment, M, vs curvature, t<ho, relations for plates with the initial thickness inhomogeneity
specified by tl =0.0006, mI =I and b =0 in (8), with a half wavelength to initial thickness ratio of 0.301.
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maximum moment occurs at a significantly smaller curvature than for the perfect elastic-plastic
plate depicted in Fig. 2. On the other hand, the moment-eurvature relation for the imperfect
nonlinear elastic plate is virtually identical with the one corresponding to a perfect plate until
1<110 "" 0.63. Then the curvature Kilo, or equivalently the angle 8, ceases to increase monotonic­
ally. This nonmonotonic behavior is associated with the formation of shear bands, first on the
compressive side and then on the tensile side of the plate.

The development of the deformation pattern is shown in Fig. 5, for the ]2 corner theory
solids, and in Fig. 7 for the nonlinear elastic solid. These figures depict the deformed finite
element mesh (only the quadrilaterals are shown) for a plate with an initial length, 1...0, five times
the half-wavelength of the initial imperfection. This choice of Lo, 1...0 = 1.51, is made to facilitate
comparison with results to be presented subsequently. We reiterate that the periodicity evident
in these figures is enforced by the computation, since only one half wavelength is analyzed
numerically.

In Fig. 5, at a curvature Kilo = 0.31, there is no evident deviation from the cylindrical
deformation pattern of a perfect plate. At kilo = 0.71, which is somewhat prior to the attainment
of the maximum moment, surface undulations are visible on both the compressive and tensile
sides of the plate. The undulations on the compressive side are a bit more evident than those on
the tensile side as could be antiCipated from the fact that compressive surface waves begin to
grow at a smaller curvature than do tensile surface waves. At this stage, the deformation
patterns for the two corner descriptions are not visibly different. On the other hand, when
Kilo =1.02, a shear band pattern is evident in Fig. 5, with noticeably greater shearing for the
solid with the sharper corner.

Figure 7 depicts deformation patterns at four stages of the loading history for the nonlinear
elastic solid. Figure 7(a) is a stage early in the deformation history and the surfaces of the plate
still appear cylindirical while Fig. 7(b), Kho= 0.626, is well beyond the curvatures corresponding
to compressive and tensile surface instabilities and both surface imperfections have been
activated. At a slightly greater curvature Kho= 0.632, the first snap back of the moment­
curvature curve has occurred and shear bands have appeared at the compressive side of the
plate. The final stage shows well developed shear bands on both surfaces, with increasing
shearing occurring as the curvature decreases.

Figures 6 and 8 give a more quantitative picture of shear band development. In these figures
contours of constant maximum principal strain are plotted in the current deformed configura­
tion. Figures 6 and 8 depict the same stages of deformation as shown in Figs. 5 and 7,
respectively. In these figures only one half the plate is pictured.

At the smallest curvatures, Kilo =0.31 in Fig. 6 and Kho=0.30 in Fig. 8, a slight waviness of
the contours, induced by the presence of the initial thickness imperfection, is evident. When the
critical strain for surface waves has been passed, the waviness of the strain pattern grows
rapidly. In Figs. 6(b\) and 6(b2) and in Fig. 8(b), the wavelength of the contour line for 0.30 is
one third the wavelength of the initial imperfection on the compressive side of the plate and is
equal to the wavelength of the initial imperfection on the tensile side of the plate.

(0,) ( b,) (c,)

(02) (b 2 ) (c 2 )

Fig. S. The deformed mesh at three curvatures for the two vertex characterizations employed here. (a)
Kho =0.31, (b) Kho =0.71, and (c) Kho = 1.02. The subscript I refers to the vertex characterized by
(lie)"", = 135° and the ~ubscript 2 refers to ~ vertex characterized by <lie).... =mo. The initial imper­
fection is specified by fl =0.0006. mI =I and fz = 0 in (8), with a baH wavelength to initial thickness ratio
of 0.301. The confiJUration shown is for a plate five wavelengths long, but only one half wavelength was

analyzed numerically.
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Fig. 6. Contours of constant maximum principal logarithmic strain in the deformed configuration (one half
the plate is shown) for the two vertex characterizations employed here. (a) Kho= 0.31, (b) Kho = 0.71 and (c)
Kho = 1.02. The subscript 1refers to the vertex characterized by (f3c )max = 135" and the subscript 2 refers to
the vertex characterized by (f3c ).... =115°. The initial imperfection is specified by ~I =0.0006, mI = 1 and
~2 = 0 in (8), with a half wavelength to initial thickness ratio of 0.301. The configuration shown is for a plate

five wavelengths long, but only one half wavelength was analyzed numerically.

Figures 6(c) exhibit the fully developed shear band pattern for the two vertex charac­
terizations. Although in Fig. 6(C2), corresponding to the more blunt vertex, shear band
development is significantly retarded compared to that exhibited in Fig. 6(CI), certain qualitative
features are common to both shear band patterns. For example, the greatest shearing occurs on
the compressive side of the plate. The course of shear band development for the nonlinear
elastic solid is quite different from that for the h corner theory solids in that once shear bands
do appear on the tensile side of the plate, relatively little additional growth of the shear bands
on the compressive side takes place.

A common feature exhibited by both the 12 corner theory solids and by the nonlinear elastic

(oj

(c)

(b)

(d)

Fig. 7. The deformed mesh at four curvatures for the nonlinear elastic solid.Ja) Kho = 0.300, (b) Kho -: 0.626.
(c) Kho = 0.632 and (d) Kho = 0.654. The initial imperfection is specified by ~I =0.0006, m =I and Ez = 0 in
(8), with a half wavelength to initial thickness ratio of 0.301. The configuration shown is for a plate five

wavelengths long, but only one half wavelength was analyzed numerically.
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Fig. 8. Contours of constant maximum principal logarithmic strain in the deformed configuration (only one
half the plate is shown) for the nonlinear elastic solid. (a) Kho = 0.300, (b) Kho = 0.626, (c) Kho = 0.632 and (d)
Kho = 0.654. The initial imperfection is specified by €. = 0.0006, m. = I and ~ = 0 in (8), with a half
wavelength to initial thickness ratio of 0.301. The configuration shown is for a plate five wavelengths long,

but only one half wavelength was analyzed numerically.

solid is that not every wave peak on the compressive side of the plate in Figs. 6(b) and 8(b)
develops into a shear band.

In the results presented so far, attention has been confined to periodic imperfections and
periodic deformation patterns. Quite general considerations, Tvergaard and Needleman[31l,
suggest that after the maximum moment has been attained, preferential growth of a localized
pattern is to be expected. Figures 9-12 illustrate the effect of a long wavelength imperfection
superposed on a shorter wavelength imperfection. Two imperfections of the form (8) are
considered with one component having a half-wavelength of LoiS. In one case El = 0.0015,
mt =2, ~2 =- 0.0006, m2 =5, which gives rise to the minimum thickness cross section occurring
at Xl/Lo= 0.44, while in the other case a larger imperfection giving the minimum cross section
nearer Xl =0, at xl/Lo =0.17 is specified, namely tl =-0.01, ml = I, ~2 =0.0025, m2 =5. In
each case we confine our attention to the 12 corner theory solid with the sharper of the two
limiting cone angles considered, ({3c)max = 135°. A 32 x 48 finite element grid is employed, with
the conditions on element orientation giving Lo/ho= 1.45.

Figure 9 displays the computed curves of nondimensional moment, M/uyho
2

, vs the curvature
parameter Kho, as defined by (30). For the smaller imperfection the moment curvature relation

05

0.4 "--r- ~-{"~OoI5.m"2,{,'-00006.m,'5

"'--(,'-001. m,'l. (, , 00025. m.'5

~o 0.3,.,
~
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O~~-:---:-'-:----::'=--=-'=--~_-'-:-_-------o 0.2 0.4 0.6 08 10 12
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Fig. 9. The moment, M, vs curvature, Kho, relations for plates with two different imperfections. In each
case Lolho= 1.45 and the constitutive law employed is the 17 comer theory with (lie )mu = 135°,
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Undeformed Configurotion

(b) (c I

(d)

Fig. 10. The undeformed configuration and the deformed mesh at four curvatures for h corner theory with
(tU... =13S·, Lo/Ho=1.4S, and i.=O.OOI5, ml=2, ~=-0.0006 and m2=S in (8). (a) Kilo = 0.38, (b)

Kho = 0.62, (c) Kho = 0.83 and (d) Kho= 1.01.

hardly differs from the corresponding one in Fig. 4, despite the presence of a longer wavelength
imperfection with an amplitude two and a half times greater than the imperfection with m2 = 5.
The maximum moment occurs at a slightly smaller curvature, Kilo = 0.71 in Fig. 9 as compared
with Kho= 0.72 in Fig. 4, while the value of the maximum moment itself is virtually unaltered.
However, consistent with the considerations of [31], the moment decreases more rapidly when
localization occurs, Fig. 9, than when the deformations remain periodic, Fig. 4. For the larger
imperfection, the location as well as the value of the maximum moment are significantly altered.

Figures 10-13 depict the deformation patterns at four stages of loading. For comparison
purposes Figs. 10 and 12 also show the undeformed configurations for each of the
imperfection patterns considered. The symmetry about xI =0 exhibited in Figs. 10 and 12 is
enforced by the boundary conditions; only one half of the mesh is employed in the com­
putations,
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Fig. II. Contours of constant maximum principal logarithmic strain in the deforme~ configuration (one ~alf

the plate is shown) for h corner theory with (/k).... = 135·, LoI~ = I.4S, and f. = O.OOIS, m. = 2. f2 =
-0.0006 and m2=S in (8). (a) Kho=0.38, (b) K~=0.62,(c) K~=0.83 and (d) Kho= 1.01.
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Undeformed ConfiQurotion

(bl

(0)

(c)

(d)

Fig. 12. The undeformed configuration and the deformed mesh at four curvatures for h corner theory with
(11<).... =mo, LoIhG= 1.45, and E= -0.01, m, = I, E2=0.0025 and m2=5 in (8). (a) KhG=0.24, (b)

Kho= 0.36, (c) KhG = 0.46 and (d) KhG = 0.63.

In Figs. 10 and 11 where results are displayed for the smaller of these two imperfections, the
first two stages of deformation shown are on the ascending branch of the moment-curvature
curve and the deformation pattern is nearly periodic with period LoiS, although indications of
the intluence of the longer wavelength imperfection can be seen. The more localized shear band
pattern that has emerged is evident in the latter two stages shown. The greatest shearing has
occurred on the symmetry line x I =0 at the compressed surface of the plate, even though this is
not initially the minimum thickness cross section. The contour plots in Figs. II(c) and (d) show
evidence of regions of shearing induced by the shorter wavelength imperfections that have not
developed as the deformation have become more concentrated into the pattern favored by the
long wavelength imperfection.

The development of the deformation pattern depicted in Figs. 12 and 13 for the larger
imperfection cillfers from the previous ones shown. This imperfection is visible in the un-
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Fig. 13. Contours of constant maximum principal logarithmic strain in the deformed configuration (one hll1f
the plate is shown)for h corner theory with (II<)"... = 135°, LoIhG= 1.45, and EI = -0.01, ml = I, ~ = 0.0025

and m2 = 5 in (8). (a) KhG = 0.24, (b) KhG = 0.36, (c) KhG = 0.46 and (d) KhG = 0.63.



136 N. TRlANTAFYLLlDIS et al.

deformed mesh shown in Figs. 12 and the long wavelength imperfection clearly manifests itself
prior to the attainment of the maximum moment. No surface wave development can be
detected on the compressive side of the plate prior to the formation of shear bands. On the
contrary, the initial waviness of this surface appears to flatten out somewhat. However, within
the highly developed shear band evident in Figs. 12(d) and 13(d) there are very short
wavelength surface oscillations on the compressed surface.

6. DISCUSSION

The shear bands exhibited in Figs. 5(c), lO(d) and 12(d) for a strain hardening elastic-plastic
solid with a vertex on the yield surface are arranged in a pattern which resembles that
associated with the formation of a plastic hinge. The location, and number, of these "plastic
hinges" varies but the pattern of shear bands forming the hinge is qualitatively similar in each
figure.

The shear bands originate at strain concentrations on the plate surfaces, induced by the
initial thickness inhomogeneity. Here the short wavelength component of the thickness imper­
fection (m = 5) plays the primary role in developing these surface strain concentrations. When
longer wavelength imperfections are present, as in Figs. 10 and 12, their main effect is to favor
the development of one or more particular plastic hinges. The initial short wavelength surface
waviness can amplify into a considerable surface roughness prior to shear band development,
particularly on the compressive side of the plate. However, if the initial imperfection gives a
more pronounced local thickness reduction, as in Fig. 12, then shear bands can form without
substantial growth of the surface undulations occurring first.

The course of shear band development in pure bending can be compared with that found in
plane strain tension specimens with initial thickness inhomogeneities by Tvergaard et al. [5]. In
plane strain tension[5], as here, the shear bands intersectthe free surface at points of strain
concentration induced by the initial thickness imperfections. However, in plane strain tension,
due to diffuse necking, the most intense straining prior to shear band formation occurs in the
interior of the specimen. For the h corner theory solid, this leads to intense shearing taking
place in the interior of the specimen and in certain circumstances, permits internal shear bands
unconnected to the free surfaces to form [5]. On the other hand, in pure bending, the shear
bands must propagate inward against an adverse deformation gradient. The peak straining
within the shear bands always occurs at the free surfaces. Furthermore, due to this deformation
gradient the shear bands exhibited here are clearly curved compared with the essentially
straight shear bands found in [5]. The shear bands end inside the material, although as can be
seen in the contour plots, Figs. 6, 8, 11 and 13, their presence has an effect on strain contours
still in the elliptic regime.

The present results show a significant dependence of the course of shear band development
on the constitutive law employed to characterize the material behavior. The two vertex
characterizations employed here were also employed by Hutchinson and Tvergaard[12] in their
study of shear band development in plane strain tension. For the sharper vertex, (l3c)max = 135°,
all straining eventually localized in the shear band, while the more blunt vertex, (l3c)max = 115°,
led to a saturation of localized deformation within the shear band with the most critical initial
orientation except for a very large imperfection[12]. For the more blunt vertex localization did
occur with small imperfections although in shear bands not in the initial orientation optimal for
bifurcation and at a somewhat higher strain level. The difference between these vertex
descriptions manifests itself when the deviation from proportional loading is such that total
loading no longer takes place. During the initial phases of surface wave growth, even up to
Kho=0.71 in Figs. 5 and 6, the deviation from proportional loading, at the surfaces, is not great
enough for there to be a large difference between the response of these two J2 corner theory
solids. However, shear band development necessitates large deviations from proportional
loading and in Figs. 5 and 6 shear band development is visibly retarded for the solid with the
more blunt vertex. For the classical elastic plastic solid with a smooth yield surface the
response to a change in loading path is so stiff that shear bands would not form at the strain
levels encountered here.

The response of the nonlinear elastic solid is more complex than that of either J2 corner
theory solid. As the shear bands form on the compressive side of the plate, the curvature
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decreases as shown in Fig. 5. This "snap-back" in curvature is analogous to, but more
complicated than, that found for a nonlinear elastic solid by Tvergaard et al. [5] in plane strain
tension. Due to the adverse deformation gradient, the shear band growth on the compressive
side of the plate is limited. Straining continues on the tensile side of the plate under increasing
curvature. Subsequently, with the formation of shear bands on the tensile side of the plate the
second "snap-back" of curvature is encountered.

The shear band pattern that develops in the nonlinear elastic solid, Figs. 7 and 8, con­
sequently differs from those shown for the ]2 corner theory solids in Figs. 5 and 6. Considering
the "soft" response of the nonlinear elastic solid to a change in loading path there is relatively
little penetration of the shear bands on the compressive side of the plate into the center. On the
other hand, comparing Figs. 6 and 8, the nonlinear elastic solid exhibits greater straining along
the tensile surface. These features are related and are associated with the stress relaxation that
occurs outside the shear bands with increasing deformation in the bands.

For all cases considered, in which the deformation pattern is required to remain periodic,
the concentration of deformation into the shear bands occurs rather slowly. An additional long
wavelength imperfection significantly enhances the concentration of deformation into shear
bands as can be seen by a comparison of Figs. 5 and 6 with Figs. 10 and 11, even though the
long wavelength imperfection itself does not appear to grow substantially. Somewhat beyond
the maximum moment a localized deformation pattern rather than a periodic one is preferred,
as discussed by Tvergaard and Needleman[31) in the context of localization of buckling
patterns. In more general situations than the pure bending problem considered here, when shear
bands must propagate against an adverse deformation gradient, this mechanism which focusses
the deformation into one or a few shear bands may enhance shear band growth significantly.

As in the plane strain tension problem considered by Tvergaard et al. [5J the question arises
as to the relationship between the discretized problem we have solved and the corresponding
continuum problem. In [5J, the importance of an appropriate mesh orientation for resolving
shear bands was discussed. Since the shear bands in [5J were essentially straight lines, a near
optimum mesh orientation could be employed across the specimen. Here, due to the curvature
of the shear bands induced by the strongly nonuniform pre-shear band deformation state an
optimum grid orientation throughout the plate is not feasible. Undoubtedly, this leads to some
mesh induced shear band broadening as discussed by Tvergaard et al. [5J. Mesh induced or not,
the finite width of the shear bands precludes a direct comparison of the shear band orientations
here with the characteristic curves shown in the surface hyperbolic regimes in pure bending by
Triantafyllidis[9].

In one respect, at least, the relation between the present discretized results and the
underlying continuum results is less problematical than in [5J. For the ]2 corner theory solid, it
was found in [5J that the core of the neck continued to deform after shear band formation and
internal shear bands could form in this region. In the discretized problem the separation of
these internal bands was set by the mesh spacing whereas in the continuum problem there is no
natural length scale to set a minimum width of bands or a minimum separation between bands.
In pure bending due to the adverse deformation gradient there is no tendency for such internal
bands to form. This problem of material dependent length scales does, however, arise in
another guise. Intense surface oscillations occur where the shear bands meet the free surface
on the compressive side of the plate. Here, the minimum possible wavelength of these
oscillations is set by the mesh spacing, whereas in a real material some natural length scale
would limit this wavelength. By way of contrast, on the tensile side of the plate the surface and
a deep relatively wide depression forms. On the tensile side there is no tendency for a surface
undulation with the shortest wavelength permitted by the mesh to form.

The present results suggest that in pure bending of a plate made of a material prone to shear
band development, the notch-like protuberances on the compressive side of the plate would
serve as likely failure initiation sites. In practice, pure bending is rarely, if ever, encountered. If
the compressive strain at the free surface is reduced, either by the restraint arising from contact
with a die surface or by a combination of imposed bending and stretching, the growth of these
very short wavelength oscillations would be expected to be retarded, and fracture may occur
first on the tensile side. In fact, surface shear fractures observed on the tensile side of bent
plates [lOJ, subsequent to the development of surface waviness, seem to agree with the shear
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band development determined in the present study. A combination of bending and stretching
would likely enhance the growth of the surface depressions on the tensile side.
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